Online nanoflow reversed phase-strong anion exchange-reversed phase liquid chromatography-tandem mass spectrometry platform for efficient and in-depth proteome sequence analysis of complex organisms.
نویسندگان
چکیده
The dynamic range of protein expression in complex organisms coupled with the stochastic nature of discovery-driven tandem mass spectrometry (MS/MS) analysis continues to impede comprehensive sequence analysis and often provides only limited information for low-abundance proteins. High-performance fractionation of proteins or peptides prior to mass spectrometry analysis can mitigate these effects, though achieving an optimal combination of automation, reproducibility, separation peak capacity, and sample yield remains a significant challenge. Here we demonstrate an automated nanoflow 3-D liquid chromatography (LC)-MS/MS platform based on high-pH reversed phase (RP), strong anion exchange (SAX), and low-pH reversed phase (RP) separation stages for analysis of complex proteomes. We observed that RP-SAX-RP outperformed RP-RP for analysis of tryptic peptides derived from Escherichia coli and enabled identification of proteins present at a level of 50 copies per cell in Saccharomyces cerevisiae, corresponding to an estimated detection limit of 500 amol, from 40 μg of total lysate on a low-resolution 3-D ion trap mass spectrometer. A similar study performed on a LTQ-Orbitrap yielded over 4000 unique proteins from 5 μg of total yeast lysate analyzed in a single, 101 fraction RP-SAX-RP LC-MS/MS acquisition, providing an estimated detection limit of 65 amol for proteins expressed at 50 copies per cell.
منابع مشابه
Dual-purpose sample trap for on-line strong cation-exchange chromatography/reversed-phase liquid chromatography/tandem mass spectrometry for shotgun proteomics. Application to the human Jurkat T-cell proteome.
A dual-purpose sample-trapping column is introduced for the capacity enhancement of proteome analysis in on-line two-dimensional nanoflow liquid chromatography (strong cation-exchange chromatography followed by reversed-phase liquid chromatography) and tandem mass spectrometry. A home-made dual trap is prepared by sequentially packing C18 reversed-phase (RP) particles and SCX resin in a silica ...
متن کامل2D-LC/MS techniques for the identification of proteins in highly complex mixtures.
Today, 2D online or offline liquid chromatography/mass spectrometry is state of the art for the identification of proteins from complex proteome samples in many laboratories. Both 2D liquid chromatography methods use two orthogonal liquid chromatography separation techniques. The most commonly used techniques are strong cation exchange chromatography for the first dimension and reversed phase s...
متن کاملCapillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.
A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kin...
متن کاملOnline nanoflow RP-RP-MS reveals dynamics of multicomponent Ku complex in response to DNA damage.
Tandem affinity purification (TAP) coupled with mass spectrometry has become the technique of choice for characterization of multicomponent protein complexes. While current TAP protocols routinely provide high yield and specificity for proteins expressed under physiologically relevant conditions, analytical figures of merit required for efficient and in-depth LC-MS analysis remain unresolved. H...
متن کاملA multidimensional differential proteomic platform using dual-phase ion-exchange chromatography-polyacrylamide gel electrophoresis/reversed-phase liquid chromatography tandem mass spectrometry.
Differential proteomic analysis has arisen as a large-scale means to discern proteome-wide changes upon treatment, injury, or disease. Tandem protein separation methods are required for large-scale differential proteomic analysis. Here, a novel multidimensional platform for resolving and differentially analyzing complex biological samples is presented. The platform, collectively termed CAX-PAGE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 83 18 شماره
صفحات -
تاریخ انتشار 2011